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THE EFFECT OF INITIAL DISCHARGE ON THE DEVELOPMENT OF A SUBMERGED

NONISOTHERMAL ROUND JET IN A NONCOMPRESSIBLE FLUID
F. Aliyev

ABSTRACT
The problem is concerned with the hydrodynamics of a
submerged jet taking into account the initial discharge and

generalized for the case of a nonisothermal jet.

The problem concerning the lsothermal Jjet with an assigned impulse was
solved in (ref. 1) where the initial discharge was assumed to be equal to
zero, while the impulse was considered to finite. The effect of a finite
initial discharge was investigated for an untwisted (ref. 2) and twisted
(ref. 3) jet. The nonisothermal prpblem of a round jet with a given impulse
and a given quantity of heat but without taking into account the finite
value of the initial discharge was solved by Chia Shun Yih (ref. 4). The
present article presents the solution of the problem on the prépagation of
the submerged nonisothermal round jet with a given discharge, impulse and

quantity of heat.

*Numbers given in the margin indicate the pagination in the original foreign

text.
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The equations which describe this process in a cylindrical system of
coordinates, with the origin at the center of the output section, have the

form (ref. 4)
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For a nontrivial solution of system (1) it is necessary to satisfy additional

integral conditions for the conservation of impulse and quantity of heat:
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For the hydro-dynamic part of the problem which may be considered sepa- /107
rately if we assume that the temperature drop is small, we obtained solutions
{

in the form of asymptotic expansions using the inverse powers of the abscissas

(ref. 5):
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We shall seek the solution of the third equation of system (1) in the

form of a similar asymptotic expansion
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Having determined the derivatives 36/3x, d6/3r, 829/672 from (6) and
substituted them together with expressions for u and v (4) into the third
equation of system (1) we equate the coefficients in front of the same
negative powers of x in both parts; then we obtain the following system of
ordinary differential equations of the second order (the prime indicates that

the derivative is taken with respect to 1):
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A comparison of coefficients in front of the same powers of x under 1108

conditions of nontriviality (3) leads to the following integral relationships:
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The first equation of system (7) was solved by Chia Shun Yih (ref. k4).

He found that

To find 6, we transform to a new argument £ in accordance with the equation
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Then we shall have (the dot above the function means that the derivative isg

taken with respect to E)
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The second condition of system (8) will take the form
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It is easy to see that the solution of the homogeneous equation (11) satisfying

the condition of finiteness for £ = 0 will be the power series

W= Yae, (14)

where AO = 1 while the other coefficients are determined by the recurrent

relationship
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Series (1L4) converges when £ <1, i.e., for all finite values of 7. The
particular solution of the nonhomogeneous equation (11) will also be sought

in the form of a power series
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The coefficients of this series are determined by the following recurrent /109

relationship
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where ay is the coefficient in front of gk for the binomial expansion (1 - g)ga

in a power series, while B, = 0.5, a_y = 0. BSeries (17) also converges when

0
£ < 1.

Taking into account (14) and (16) we obtain the general solution of dif-

ferential equation (11) in the form
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Substituting expansion (18) into the integral condition (13), we obtain an

expression for the constant of integration C:
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After this we can write the final expression for §(x,T),
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In a particular case when o = 1 the homogeneous part of equation (11) has

the form
I —Hh+ 4+ 44, =0. { (21)

Since the coefficient in front of the unknown function in equation (21) is not
one of the natural numbers n(n-1), where n = 0, 1, 2..., the only limited
solution for ¢ = 1 will be the zero solution (6). Therefore, the general
solution of the equation in this case will consist only of the particular
solution which in the case considered is transformed into a polynomial of

the third degree
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Transforming to the initial argument T we obtain for ¢ =1
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while 6 will be given by the expansion
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A comparison of equalities (4) and (24) shows that in this case as well as
in the case when the initial discharge is not taken into account, there is
a similar%ty between the distribution of longitudinal velocities and
temperatures.
Equation (20) was used to carry out calculations for three values of the

‘initial discharge (figs. 1-3) with o = 0.72.
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Figure 1. The variation in
the dimensionless temperature

at two cross sections of the

. 1 0.1 (I=M,p=0. 204 J—
Jet for o ; 02 (4-Mop=0 5-0.4 6

0.8) A=t 2= 4q
He

\\.
\%\W\X

' 3 08 AT fhee
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From the curves which are presented we can conclude that as the initial
discharge increases the curves 8(1) 6(N)/8,5x become more filled and the effect
of the initial discharge decreases when the distance from the outlet increases.

The solution which has been obtained shows the possibility of applying

the asymptotic expansion in the case of a nonisothermal jet.
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Figure 3. Variation in
emaX along the axis of R
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Symbols Used
X, rnu, v are the longitudinal and radial coordinates and velocities respec-
tively; T - is the temperature at any point in the jet; Ty - is the tempera-
ture of the liquid in which the jet is propagated, (T - Ty )/T, is the dimension-

less temperature; p is the fluid density, o is the Prandtl number, q, W are the

kinematic and dynamic coefficients of viscosity, My is the initial discharge.

Summary

The paper considers _the problem of a submerged nonisothermal round
jet taking into account the initial mass-flow rate. The method of asymptotic
expansion is used to obtain the solution. The solution is used to carry out
calculations for three values of the initial discharge into two sections of
the jet with o = 0.72. 'The relationship 6(1) is shown in figure 1, the ratio

along the axis is

6(7)/6pax is shown in figure 2 while the veriation in 8pay

shown in figure 3.
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